Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 2. Bound-state calculations and infrared spectra.
نویسندگان
چکیده
Rovibronic energy levels and properties of the Br(2P)-HCN complex were obtained from three-dimensional calculations, with HCN kept linear and the CN bond frozen. All diabatic states that correlate to the 2P3/2 and 2P1/2 states of the Br atom were included and spin-orbit coupling was taken into account. The 3 x 3 matrix of diabatic potential surfaces was taken from the preceding paper (paper 1). In agreement with experiment, we found two linear isomers, Br-NCH and Br-HCN. The calculated binding energies are very similar: D0 = 352.4 cm(-1) and D0 = 349.1 cm(-1), respectively. We established, also in agreement with experiment, that the ground electronic state of Br-NCH has |Omega| = (1/2) and that Br-HCN has a ground state with |Omega| = (3/2), where the quantum number, Omega, is the projection of the total angular momentum, J, of the complex on the intermolecular axis R. This picture can be understood as being caused by the electrostatic interaction between the quadrupole of the Br(2P) atom and the dipole of HCN, combined with the very strong spin-orbit coupling in Br. We predicted the frequencies of the van der Waals modes of both isomers and found a direct Renner-Teller splitting of the bend mode in Br-HCN and a smaller, indirect, splitting in Br-NCH. The red shift of the CH stretch frequency in the complex, relative to free HCN, was calculated to be 1.98 cm(-1) for Br-NCH and 23.11 cm(-1) for Br-HCN, in good agreement with the values measured in helium nanodroplets. Finally, with the use of the same potential surfaces, we modeled the Cl(2P)-HCN complex and found that the experimentally observed linear Cl-NCH isomer is considerably more stable than the (not observed) Cl-HCN isomer. This was explained mainly as an effect of the substantially smaller spin-orbit coupling in Cl, relative to Br.
منابع مشابه
Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 1. Adiabatic and diabatic potential surfaces.
The three adiabatic potential surfaces of the Br(2P)-HCN complex that correlate to the 2P ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of four diabatic potential surfaces required to define the full 3 x 3 matrix of diabatic potentials. E...
متن کاملA high-resolution infrared spectroscopic investigation of the halogen atom-HCN entrance channel complexes solvated in superfluid helium droplets.
Rotationally resolved infrared spectra are reported for the X-HCN (X = Cl, Br, I) binary complexes solvated in helium nanodroplets. These results are directly compared with those obtained previously for the corresponding X-HF complexes [J. M. Merritt, J. Küpper and R. E. Miller, Phys. Chem. Chem. Phys., 2005, 7, 67]. For bromine and iodine atoms complexed with HCN, two linear structures are obs...
متن کاملAB Initio Calculations of NMR Spectra for H20114C9N4 As A New Nanosemiconductor Molecule
BCN compounds have been researched theoretically and experimentally widely. In this paper, weintroduce the theoretical prediction of ternary B-C-N compounds. NMR spectroscopy was employedextensively to study these ternary nanostructures. We discuss the utilization of chemical shiftinformation as well as ab initio calculations of nuclear shielding for H20134C9N4 structuredetermination. We calcul...
متن کاملAb initio treatment of the chemical reaction precursor complex Cl(2P)-HF. 2. Bound states and infrared spectrum.
Bound energy levels and properties of the Cl(2P)-HF complex were obtained from full three-dimensional (3D) calculations, with the use of the ab initio computed diabatic potential surfaces from the preceding paper and the inclusion of spin-orbit coupling. For a better understanding of the dynamics of this complex we also computed a 2D model in which the HF bond length r was frozen at the vibrati...
متن کاملNMR spectra of Azobenzene-bridged calix [8] arene complexes by ab initio hartree-fock calculations as nanostructure compound
Calix[8]arenes of conformational rigid were isolated. The NMR parameters of the structure of calix[8]arenes have been compared. The study of organic structures to form nanoporous materials is well-known in chemistry phenomena to find the crystal form of calix[8]arene as supramolecule. Investigated and compared hydrogen bonding, oxygen and nitrogen atoms effect on calix[8]arene and its complexes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 111 31 شماره
صفحات -
تاریخ انتشار 2007